ตสตs ccilis

USN

Fifth Semester B.E. Degree Examination, June/July 2019 Design of RC Structural Elements

Time: 3 hrs .
Max. Marks: 80

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
 2. Use of IS456-2000 and SP-16 is permitted.
 3. Assume any missing data suitably.

Module-1

1 a. Explain the principles of limit state design.
(06 Marks)
b. Enlist the reasons for adopting partial safety factors for loads and material strength.
(05 Marks)
c. Derive from the fundamentals the expression for the area of stress block $0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{x}_{\mathrm{u}}$.
(05 Marks)

OR

2 a. Explain short term deflection and long term deflection.
(06 Marks)
b. A simply supported RCC beam of size $300 \mathrm{~mm} \times 600 \mathrm{~mm}$ carries a Udl live load of $25 \mathrm{kN} / \mathrm{m}$ and superimposed load [Dead load] $12 \mathrm{kN} / \mathrm{m}$ over an effective span of 5 m . It is reinforced with 4 - \# 16 mm diameter bars. The effective cover is 50 mm . Calculate the short term deflection and long term deflection of beam, if i) Uitimate shrinkage coefficient $=0.0003$, ii) Creep co-efficient $=1.6$, concrete grade M 20 , and steel Fe 415 are used.
(10 Marks)

Module-2

3 a. A singly reinforced concrete beam of $250 \mathrm{~mm} \times 450 \mathrm{~mm}$ deep upto the centre of reinforcement is reinforced with $3-\# 16$ at an effective cover of 50 mm , effective span 6 m , M20 concrete and Fe415 steel. Determine the central point load that can be supported in addition to the self weight.
(10 Marks)
b. Determine the moment of resistance of a T-beam for the following data:

Breadth of the flange $=740 \mathrm{~mm}$,
Effective depth $=400 \mathrm{~mm}$,
Breadth of web $=240 \mathrm{~mm}$,
Area of steel $=5-20$ and
Depth of flange $=110 \mathrm{~mm}$,
Adopt M20 grade concrete and Fe415 steel.
(06 Marks)
OR
4 a. A doubly reinforced beam section is 250 mm wide and 450 mm deep upto the centre of the tensile reinforcement. It is reinforced with $2-\phi 16$ as compression reinforcement at an effective cover of 50 mm and $4-\phi 25$ as tensile steel, using M20 concrete and Fe250 steel, calculate the ultimate moment of resistance of the beam section.
(09 Marks)
b. A Tee beam has the following data:
i) C / C spacing of beams $=3.20 \mathrm{mt}$,
ii) Simply supported efficiency span of (simply) beam $\Rightarrow 8 \mathrm{~m}$
iii) Depth of slab $=150 \mathrm{~mm}$
iv) Size of web of beam $=300 \mathrm{~mm} \times 500 \mathrm{~mm}$.

Calculate the balanced moment of resistance.
(07 Marks)

Module-3

5 Design a reinforced concrete beam of rectangular cross-section using the following data: Effective span $=5 \mathrm{~m}$, width of beam $=250 \mathrm{~mm}$, overall depth $=500 \mathrm{~mm}$, service load including dead load and live load $=40 \mathrm{kN} / \mathrm{m}$, tension cover $=50 \mathrm{~mm}$. Adopt M20 grade concrete and $\mathrm{Fe}-415$ grade steel. Sketch the reinforcement details.
(16 Marks)

OR

6 a. List the circumstance under which doubly reinforced beam are recommended.
(04 Marks)
b. A rectangular beam $230 \mathrm{~mm} \times 550 \mathrm{~mm}$ deep is subjected to a sagging BM of 40 kNm , shear force of 30 kN and twisting moment of 11.5 kNm at a given section. Design the reinforcement if M20 grade concrete and Fe 415 steel are used. Sketch the details. (12 Marks)

Module-4

7 Design a R.C.C. slab for an office floor $4.5 \mathrm{~m} \times 5.5 \mathrm{~m}$ with all four edges discontinuous and corners held down. The live load on the slab is $3 \mathrm{kN} / \mathrm{m}^{2}$. Assume floor finish as $0.6 \mathrm{kN} / \mathrm{m}^{2}$ and ceiling finish as $0.4 \mathrm{kN} / \mathrm{m}^{2}$. Use M20 concrete and Fe415 steel. Sketch the reinforcement details.
(16 Marks)

OR

8 Design a Dog legged Stair for an office building in a room measuring $2.8 \mathrm{~m} \times 5.8 \mathrm{~m}$ clear vertical distance between the floors is 3.6 m . The width of flight is to be 1.25 m . Assume live load of $3 \mathrm{kN} / \mathrm{m}^{2}$. Use M-20 concrete and $\mathrm{Fe}-415$ grade steel. Assume that the stairs are supported on 230 mm at the outer edges of landing stairs. Sketch the reinforcement details.
(16 Marks)

Module-5

9 a. Design the reinforcement for a square column of size $450 \mathrm{~mm} \times 450 \mathrm{~mm}$ to support a service load of 1500 kN . Use M20 concrete and $\mathrm{Fe}-415$ steel.
b. A column size of $300 \mathrm{~mm} \times 400 \mathrm{~mm}$ has an effective length of 3.6 m and is subjected to $P_{u}=1100 \mathrm{kN}$ and $\mathrm{M}_{\mathrm{u}}=150 \mathrm{kNm}$, about the major axis. Assuming the bars on two sides, design the column using M25 concrete and Fe415 steel.
(08 Marks)

OR

Design an isolated footing of uniform thickness of a RC column, bearing a vertical load of 600 kN and having a base of size $500 \mathrm{~mm} \times 500 \mathrm{~mm}$. The safe bearing capacity of the soil may be taken as $120 \mathrm{kN} / \mathrm{m}^{2}$. Use M-20 grade concrete and Fe-415 grade steel. Sketch the reinforcement details.
(16 Marks)

Fifth Semester B.E. Degree Examination, June/July 2019 Analysis of Indeterminate Structures

Time: 3 hrs.
Max. Marks: 80
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module- 1

1 a. Analyse the continuous beam shown in Fig.Q1(a) by slope deflection method. Draw bending moment diagram. EI is constant.
(06 Marks)

Fig.Q1(a)
b. Analyse the portal frame shown in Fig.Q1(b) by slope deflection method. Draw bending moment diagram.
(10 Marks)

Fig.Qi(b)
OR
2 a. Analyse the continuous beam shown in Fig.Q2(a) by slope deflection method. Support 'B' sinks by 3 mm . Take $\mathrm{EI}=3000 \mathrm{kN}-\mathrm{m}^{2}$. Draw bending moment diagram.
(06 Marks)

Fig.Q2(a)
b. Analyse the portal frame shown in the Fig.Q2(b) by slope deflection method. Draw bending moment diagram.
(10 Marks)

Fig.Q2(b)

Module-2

3 a. Analyse the continuous beam using moment distribution method. Draw bending moment and shear force diagram. Refer Fig.Q3(a).
(06 Marks)

Fig.Q3(a)
b. Analyse the portal frame shown in Fig.Q3(b) using moment distribution method. Draw bending moment diagram. Take EIS $=20 \mathrm{kN}-\mathrm{m}^{3}$.
(10 Marks)

Fig.Q3(b)

OR

4 a. A horizontal beam is loaded as shown in Fig.Q4(a). It support ' A ' sinks by 10 mm and B by 30 mm and C by 20 mm . Determine the end moments in the beam. Given $\mathrm{I}=2.4 \times 10^{6} \mathrm{~mm}^{4}$ and $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
(08 Marks)

Fig.Q4(a)
b. Analyse the portal frame show in Fig.Q4(b) using moment distribution method. Draw bending moment.
(08 Marks)

Fig.Q4(b)

Module-3

5 a. Analyse the continuous beam shown in Fig.Q5(a) using Mani's method. Draw bending moment diagram.
(08 Marks)

Fig.Q5(a)
2 of 4
b. Analyse the frame shown in Fig.Q5(b) using Kani's method. Draw bending moment diagram.
(08 Marks)

Fig.Q5(b)
OR
6 Analyse the frame shown in Fig.Q6 by Kani's method. Draw bending moment diagram.

Fig.Q6
(16 Marks)

Module-4

7 a. Analyse the beam shown in Fig.Q7(a) by flexibility method and draw bending moment diagram.
(08 Marks)

Fig.Q7(a)
b. Analyse the frame shown in Fig.Q7(b) by flexibility method and draw bending moment diagram.
(08 Marks)

Fig.Q7(b)

OR
8 Analyse the pin-jointed frame shown in Fig.Q8 by flexibility method. The cross-sectional areas A and E for all members is the same.
(16 Marks)

Fig.Q8

Module-5

9 a. Analyse the continuous beam shown in Fig.Q9(a) by stiffness method. Draw bending moment diagram.
(08 Marks)

Fig.Q9(a)
b. Analyse the portal frame shown in Fig.Q9(b) by stiffness method. Draw bending moment diagram.
(08 Marks)

Fig.Q9(b)

OR

10 Using stiffness method determine the displacements at the joint ' B ' of a pin-jointed frame shown in Fig.Q10. Also calculate the forces in the members AB and BC due to given loading. The values of area of cross-section are indicated. Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
(16 Marks)

Fig.Q10

Fifth Semester B.E. Degree Examination, June/July 2019 Applied Geotechnical Engineering

Time: 3 hrs.
Max. Marks: 80
Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. Use of $I S: 6403$ is permitted.

Module-1

1 a. Enumerate the objectives of subsurface exploration.
(04 Marks)
b. Explain with reference to soil surplus: Area ratio, Inside clearance Outside clearance and Recovery ratio.
(04 Marks)
c. Estimate the position of ground water table from the following data : Depth upto which water is boiled out is 32 m . Water raise in the first day : 2.4 m , Second day : 2.0 m and Third day: 1.6 m .
(08 Marks)

OR

2 a. Distinguish between undisturbed, disturbed and representative soil samples. What are the tests conducted on these samples in the laboratory?
(05 Marks)
b. Explain 'Seismic refraction method' of soil exploration, with a neat sketch on its mectranism.
(06 Marks)
c. What is a Bore hole \log ? List the information recorded in it. (05 Marks)

Module- 2

3 a. What do you understand by 'Pressure bulb'2 Illustrate with a sketch.
(05 Marks)
b. A circular area 6 m is điameter, carries a uniformly distributed load of $10 \mathrm{kN} / \mathrm{m}^{2}$. Plot the variation of vertical stress at depths $2 \mathrm{~m}, 4 \mathrm{~m}$ and 8 m .
(06 Marks)
c. Explain the principle of 'New - marks chart'.
(05 Marks)

OR

4 a. What ane different types of settlements of footings? Explain.
(04 Marks)
b. Estimate the immediate settlement of a footing of size $2 \mathrm{~m} \times 3 \mathrm{~m}$ resting at a depth of 1.5 m in sandy soil whose compression modulus is $10 \mathrm{~N} / \mathrm{mm}^{2}$. Footing is expected to transmit a unit pressure of $200 \mathrm{kN} \mathrm{m}^{2}$. Poisson's ratio of scil is 0.3 and influence factor for footing is 1.06 .
(04 Marks)
a. A saturated clay \&m thick underlies a proposed new building. The existing overburden pressure at the oentre of clay layer is $300 \mathrm{kN} / \mathrm{m}^{2}$ and load due to new building increases the pressure by $200 \mathrm{kN} / \mathrm{m}^{2}$. The liquid limit of soil is 75% with field water content $=50 \%$ and $\mathrm{G}_{\mathrm{S}}=2.7$. Estimate consolidation settlement.
(08 Marks)

Module- 3

5 a. Explain step by step pracedure of Culmann's graphical construction for determination of Active pressure.
(04 Marks)
b. A 4.5 m high retaining wall retains a cohesive soil with $\mathrm{C}=10 \mathrm{kN} / \mathrm{m}^{2}, \quad \phi=20^{\circ}$ and $\gamma=16 \mathrm{kN} / \mathrm{m}^{3}$. Calculate the depth of tension cracks and critical depth.
(04 Marks)
c. A retaining wall 6.6 m high retains a cohesionless soil whose properties are $\phi=25^{10}, \mathrm{G}=2.6$ and $\mathrm{e}=0.6$. The water table is at n depth of 2.1 m below GL. Draw the earth pressure diagram and calculate magnitude and position of active earth pressure above the base of the wall.
(08 Marks)

OR

6 a. What are the causes of slope failure? List and enumerate the types of failures in finite slopes.
(03 Marks)
b. List and enumerate the types of failures in finite slopes.
(03 Marks)
c. An embankment 6 m high has a slope of $\mathbb{I V}: 2 \mathrm{H}$. The soil properties are $\mathrm{C}=5 \mathrm{kN} / \mathrm{m}^{2}$, $\phi=30^{\circ}$ and $\gamma=19 \mathrm{kN} / \mathrm{m}^{3}$. A trial slip circle of radius 8.8 m and passing thro' the toe has its centre at the same level as the top of embankment. Find the factar of safety by the 'method of slices'.
(10 Marks)

Module-4

7 a. Define Ultimate bearing capacity, Safe bearing capacity and Allowable bearing pressure.
(03 Marks)
b. List the assumption mads in Terzagh's b.c theory.
(03 Marks)
c. Determine the safe bearing capacity of a square footing of side 1.8 m , located at a depth of 1.5 m below GL in a soil having $\gamma=16.2 \mathrm{kN} / \mathrm{m}^{3}, \mathrm{C}=15 \mathrm{kN} / \mathrm{m}^{2}$ and $\phi=35^{\circ}$. Take $\mathrm{N}_{\mathrm{c}}=57.8$, $\mathrm{N}_{\mathrm{q}}=41.1$ and $\mathrm{N}_{\mathrm{r}}=42.4$ with $\mathrm{FS}=3$. Assume water tank at great depth, what will be the SBC if WT rises to the base of footing.
(10 Marks)

GR

8 a. Explain the three modes of shear failure below the footing, with neat sketches.
(04 Marks)
b. Discuss the effect of size and shape on the bearing capacity of footing on :
i) Sand
ii) Clay.
(04 Marks)
c. Proportion a square footing to carry a load of $900 \mathbf{k N}$ from a column $4 \mathrm{Ra} \times 400 \mathrm{~mm}$ in section and located at a depth of 1.5 m below GL. The soil has $\mathrm{C}=0, \phi=3 \mathrm{f}^{\circ}, \gamma=17.5 \mathrm{kN} / \mathrm{m}^{3}$ above water table and $\gamma_{\text {sat }}=20 \mathrm{kN} / \mathrm{cm}^{3}$ below water table(WT). The WT is at the base of the footing. Permissible settlement is 25 mm , Gorrected $\mathrm{N}-$ Value $=30$. Use a FS $=2$.
[Use of IS : 6403 is permitted]. No structural design required.
(08 Marks)

Module-5

9 a. Classify the pile foundations acooiding to material ard function, with neat figures. (04 Marks)
b. Explain in detail, the principle associated with determination of pile load capacity using static formula.
(04 Marks)
c. A 12 m long, 30 mm dia. pile is driven in unifarm deposit of sand with $\phi=40^{\circ}$. The W.T is at great depth. The average dry unit weight off sand is $18 \mathrm{kN} / \mathrm{m}^{3}$. Using $\mathrm{Nq}=137$, calculate the safe lad capacity of single pile with a FS $=2.5$ and angle of wall friction $(\delta)=30^{\circ} .(08$ Marks $)$

OR

10 a. What is meant by efficiency of pile groups? Discuss Feld's rule for its determination.
b. What is Megative friction? Under what situation negative skin friction occurs. (04 Marks)
c. Calculate the safe load carrying capacity of a 16 pile group arranged in a square pattern with each pile is of 400 mm diameter, 9 m length and with a spacing of $1.2 \mathrm{~m} \mathrm{c} / \mathrm{c}$. The soil is 14 m deep clay with uncorfined strength of $100 \mathrm{kN} / \mathrm{m}^{2}, \mathrm{r}=16 \mathrm{kN} / \mathrm{m}^{3}$ and $\mathrm{r}^{1}=9 \mathrm{kN} / \mathrm{m}^{3}$ with adhesion factor $(\alpha)=0.7$. W.T is 1 m below GL. Use a FS $=2.5$.
(08 Marks)

